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ABSTRACT
IR efficiency is normally addressed in terms of accumulator
initialisation, disk I/O, decompression, ranking and sorting.
In this paper, The bottlenecks of search engines are inves-
tigated and several solutions for efficiency optimisation are
proposed. Particularly, the proposed heapk pruning algo-
rithm is very efficient and effective. The future directions of
this research work are also discussed.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval – Search process; H.3.4 [Information
Storage and Retrieval]: Systems and Software – perfor-
mance evaluation (efficiency and effectiveness)

General Terms
Algorithms, Experimentation, Performance

Keywords
Efficiency, Pruning, Impact-ordering

1. INTRODUCTION
Effectiveness and efficiency are two of the main issues in

Information Retrieval (IR). Effectiveness has been the main
focus of research. In recent years, efficiency has started to
draw more attention under the trend of larger document
collection sizes.

IR efficiency is normally addressed in terms of accumu-
lator initialisation, disk I/O, decompression, ranking and
sorting. A large portion of the performance of search en-
gines is dominated by (1) slow disk read of dictionary terms
and the corresponding postings lists, (2) CPU-intensive de-
compression of postings lists, (3) complex similarity ranking
functions and (4) sorting a large number of possible candi-
date documents [28]. In this paper, IR efficiency issues are
addressed and the optimisation approaches are discussed for
the search engine used in our research lab.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR ’11 Beijing, China
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

2. RELATED WORK
Disk I/O involves reading query terms from a dictionary

(a vocabulary of all terms in the collection) and the corre-
sponding postings lists for the terms. The dictionary has a
small size and can be loaded into memory at start-up. How-
ever, due to their large size, postings are usually compressed
and stored on disk. A number of compression algorithms
have been developed and compared [27, 4]. Another way
of reducing disk I/O is caching, either at application level
or system level [6, 14]. Since the advent of 64-bit machines
with vast amounts of memory, it has become feasible to load
both the dictionary and the compressed postings into main
memory, thus eliminating all disk I/O. Reading both dictio-
nary and postings lists into memory is the approach taken
in our search engine.

The processing (decompression and similarity ranking) of
postings and subsequent sorting of accumulators can be com-
putationally expensive, especially when queries contain fre-
quent terms. Processing of these frequent terms not only
takes time, but also has little impact on the final ranking
results. Postings pruning is a method to eliminate unnec-
essary processing of postings and provide partial scores for
top k documents. Postings pruning can be done at either
index time or query time. Pruning at index time reduces
the physical size of the index file [10, 19, 8]. However it is a
lossy compression; Pruned postings are not kept for access
at query time.

Pruning at query time does not modify the index file, but
prunes postings at run-time during query evaluation. It al-
lows the approaches of different criterion at query time to
keep track of the top k documents. A number of pruning
methods have been developed and proved to be efficient [9,
11, 18, 16, 29, 21, 1, 28, 12]. In this paper, pruning at query
time is discussed.

Buckley and Lewit [9] developed an upper-bound pruning
algorithm which keeps track of the top k and k + 1 ranked
documents and stops query evaluation when it is impossible
for the k + 1th document to impact the top k documents.
Harman and Candela [11] used pairs of 〈document id, term
weight〉 for postings instead of traditional 〈document id,
term frequency〉. Term weights are pre-calculated at index
time and accumulated at search time to form the similar-
ity scores. Postings with low IDFs were statically pruned.
Persin [20, 21] developed a pruning algorithm which takes
into consideration both the Kins global parameter (term im-
portance across the whole collection, e.g. DF) and the Kadd

local parameter (the number of occurrences of a term in each
document, e.g. TF).The Kins threshold determines whether



a new document should be either treated as a candidate or
ignored. The Kadd threshold determines if it is worth to
update a candidate document which is already in the top
k. Moffat et al [18, 16] introduced QUIT and CONTINUE
pruning methods. The QUIT method stops processing post-
ings when the number of non-zero accumulators reaches to a
pre-defined threshold, while the CONTINUE methods con-
tinues to refine the order of the already-inserted accumula-
tors. Anh et al [1] developed the any-time stopping pruning
algorithm which uses an array of lists (indexed by quantised
impact values) to keep track of the current top candidates.
Theobald et al [25] presented a pruning method for XML
retrieval which maintains the top k candidate documents
using a probabilistic score predication.

In my early work [28], the topk pruning algorithm is pre-
sented. It partially sorts the static array of accumulators
using a special version of quick sort [7], and also statically
prunes postings. Instead of explicit sorting the accumu-
lators, an improved version of the topk was then devel-
oped [12]. It keeps track of the current top documents and
the minimum partial similarity scores among the top docu-
ments. The improved topk algorithm was then extended to
the heapk pruning algorithm [12, 13] which uses a minimum
heap to keep track of the top k documents.

Traditionally, postings are stored in pairs of 〈document
number, term frequency〉 pairs. However, postings should
be impact ordered so that most important postings can be
processed first and the less important ones can be pruned
using pruning methods [20, 21, 1]. One approach is to store
postings in order of term frequency, and documents with the
same term frequency are grouped together [20, 21]. Each
group stores the term frequency at the beginning of the
group followed by the compressed differences of the docu-
ment numbers. The format of a postings list for a term is
a list of the groups in descending order of term frequencies.
Another approach is to pre-compute similarity values and
use these pre-computed impact values to group documents
instead of term frequencies [1]. Pre-computed impact val-
ues are positive real numbers. In order to better compress
these numbers, they are quantised into whole numbers [18,
1]. Three forms of quantisation method have been proposed
(Left.Geom, Uniform.Geom, Right.Geom) and each of the
methods can better preserve certain range of the original
numbers [1]. In our search engine, we use pre-computed
BM25 impact values to group documents and the differences
of document numbers in each group are compressed using
Variable Byte Coding by default. We choose to use the
Uniform.Geom quantisation method for transformation of
the impact values, because the Uniform.Geom quantisation
method preserves the original distribution of the numbers,
thus no decoding is required at query time. Each impact
value is quantised into an 8-bit whole number.

Since only partial postings are processed in query prun-
ing, there is no need to decompress the whole postings lists.
Skipping [16] and blocking [17] allow pseudo-random access
into encoded postings lists and only decompress the needed
parts. Further research work [3, 2] represent postings in a
fixed number of bits, thus allowing full random access. Our
search engine partially decompress postings list based on
the worst case of the static pruning, we do not implement
skipping. We can simply halt decompression after a fixed
number of postings have been decompressed.

A number of accumulators, usually as a static array, need

to be created and initialised for term-at-a-time processing
[9, 11]. The accumulators hold the intermediate accumu-
lated results for each document. For large collections, a
large number of accumulators has to be used. Initialisa-
tion of large number of accumulators can take time. This is
the criticism of the term-at-a-time approach. Alternatively,
the document-at-a-time approach ranks one document at a
time, thus does not need to hold intermediate results [30, 26].
However, the document-at-a-time approach requires random
scan of postings lists, which takes time [24].

3. MY RESEARCH
This research is about (1) identifying the bottlenecks in

the search engine, (2) devising with efficient and effective
solutions to minimise or eliminate the bottlenecks and (3)
adopting the solutions for distributed IR.

As I have shown elsewhere [28], the bottlenecks are (1)
slow disk read of dictionary terms and the corresponding
postings lists, (2) complex similarity ranking function and
(3) sorting a large number of possible candidate documents.
Disk I/O can be completely eliminated by simply storing
the index in memory. Similarity scores are pre-computed at
index time and stored in the index. During query evaluation,
the scores can be simply added together. Postings pruning
is an efficient and effective method to reduce the number of
possible candidate document, thus reduce the time to sort.

3.1 Disk I/O
Although on a cluster of 64-bit servers it is often possible

to store the entire index in memory, it is not reasonable to
assume all uses will have this kind of hardware. Such is the
case when the search engine is run on a laptop or on a mobile
phone. In this case the index is stored on disk.

In order to speed up disk access, general-purpose operat-
ing systems usually provide buffer caching, prefetching and
scheduling optimisation algorithms. However, the I/O algo-
rithms are general-purpose, as these operating systems have
to serve various kinds of applications. For special-purpose
applications, it is better for application to bypass the general
ones and deploy their own I/O optimisation algorithms.

I have introduced and tested [14] application-specific I/O
optimisations for search engines. One way of implementing
a cache is to deploy a buffer replacement policy, like Least
Recent Used (LRU) or Least Frequent Use (LFU), which de-
fines how efficiently a finite amount of cache memory can be
used for large amounts of data on disk. This is so called dy-
namic caching. Another approach is to define which postings
lists are the most important and then let them stay in cache
memory without eviction. This is so called static caching.
Both dynamic and static caching have pros and cons. I
deployed a new caching algorithm which combines both dy-
namic and static caching. The static part caches high docu-
ment frequency words since these words have long postings
lists and so take considerable time to read from disk. A
simply LRU cache policy is used for dynamic caching. The
cache policy is defined to cache postings of terms which were
seen more than once in the query stream. Prefetching and
scheduling are straightforward.

The disk access pattern of a search engine can be predicted
from the query terms. Postings lists for the next term can
be prefetched while the current term is being processed. If
we consider that postings lists are sorted in alphabetic order
of the dictionary terms, we can define a new scheduler which



sorts disk I/O requests in the order of the dictionary terms,
which equates to linear order in the index file. The sorting
can be either local or global, where local means sorting terms
in a single query and global means sorting terms in several
queries executed concurrently.

Four different disk I/O methods were tested. In READ
the operating system disk read() function was called. In
O DIRECT the Linux O DIRECT flag was set for all file
I/O (which turns off operating system caching). READ OP-
TIMISED used read() and my optimisations, and O DIRECT
OPTIMISED used O DIRECT with my optimisations. The
optimised versions include the scheduler, postings list prefetch-
ing, and caching. Testing was on .GOV with the Million
Query Track queries. The specification of the hardware
and complete results are presented in [14]; but in summary,
O DIRECT OPTIMISED is 73% faster than O DIRECT
and 28% faster than READ. The results also show an 11%
improvement of O DIRECT OPTIMISED over READ OP-
TIMISED.

3.2 Pruning
By putting the index into memory the I/O bottleneck dis-

appears. In this case the processing of the postings list be-
comes the bottleneck. To alleviate this others have proposed
top-k searching. In [28] I developed a simple top-k algorithm
called topk. It uses a special version of quick sort for fast
sorting of the accumulators. One of the features of the algo-
rithm is partial sorting; it will return the top k documents
by partitioning and then only sorting the top partition. A
command line option (lower k) to our search engine is used
to specify how many top documents to return. Another
command line option (upper k) is used for static pruning of
postings. It specifies a value, which is the number of (impact
ordered) postings to be processed.

Based on the topk, I further developed an improved ver-
sion of the topk [13, 12]. Instead of explicit sorting of all
accumulators, during query evaluation it keeps track of the
current top documents and the minimum partial similarity
score among the top documents. The improved topk uses
an array of pointers to keep track of top documents. Two
operations are required to maintain the top documents, i.e.
update and insert. If a document is in the top documents
and gets updated to a new score, the improved topk simply
does nothing. If a document is not in the top k and gets
updated to a new score which is larger than the minimum
score, the document needs to be inserted into the top. The
insert operation is accomplished by two linear scans of the
array of pointers; (1) the first scan locates the document
which has the minimum score and swaps the minimum doc-
ument with the newly updated document, (2) the second
finds the current minimum similarity score.

The performance of the improved topk grows exponen-
tially when there are large numbers of documents and post-
ings to be processed. To resolve this problem, I developed
the heapk pruning algorithm [13]. It uses a minimum heap
to keep track of the top documents. Instead of using the
minimum similarity score, the heapk uses a bit string to de-
fine if a document is among the top k. The heap structure
is only built once which is when the number of top slots
are fully filled. Two special functions (min update() and
min insert()) are implemented for efficiency optimisation.
Every time one of the top candidate documents gets up-
dated, the min update() function is called. It first linearly

scans the heapk array to locate the right pointer and then
partially traverse down the subtree of the pointer for proper
update of the minimum heap. The linear scan is required be-
cause minimum heap is not a binary search tree. Every time
a new document is going to be inserted into the minimum
heap, the min insert() function is called. It first replace the
document with the smallest score and then partially traverse
down the tree for proper update of the minimum heap.

Four sets of experiments were conducted. The first set
was the base set, which did not use any optimisation. The
other sets were for the topk, the improved topk and heapk al-
gorithms. The test collection was the INEX 2009 Wikipedia
collection [22] and the test queries were the 107 topics in
INEX Ad Hoc 2010 [5]. Only title was used for each topic.
The collection was indexed twice, one for the base set, and
one for the topk, the improved topk and the heapk. For the
base and topk sets, term frequencies were used as impact val-
ues. For the improved topk and heapk, pre-computed BM25
similarity scores were used as impact values. For both in-
dexes, S-Striping stemming was used. The experiments were
conducted as part of the INEX Efficiency Track in 2009 and
the efficiency task of the ad hoc track in 2010.
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Figure 1: Efficiency comparison.

For the sets of experiments on the topk, improved topk
and heapk, the whole index was loaded into memory, thus
no I/O was involved at query evaluation time. For the base
set, only the first-level dictionary was loaded into memory
at start-up (The index has a two-level structure [28]).

Figure 1 shows the total evaluation times for the four sets.
The performance of the base set is plotted twice, one with
the total time and one with the CPU time only. As the
figure shows, the base set is CPU intensive (70% of the total
time).

The performance differences between the base CPU time
only and the other three sets are the times taken for (1)
decompression of the postings lists, (2) evaluation of the
similarity scores and (3) sorting of the accumulators. First,
partial decompression was used in topk, improved topk and
heapk while the base set did not. Second, evaluation of
similarity scores were converted to addition of impact values
in topk, improved topk and heapk. Third, only the required
top candidate documents were sorted in topk, improved topk
and heapk instead of sorting all accumulators.

Figure 2 shows the MAiP measures for the four sets. For
the base set, the values of upper-K has no effect since post-
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Figure 2: MAiP measures.

ings were always processed to completion. The MAiP mea-
sures are about the same for the improved topk and heapk.
The subtle differences are when documents have the same
similarity scores and the order of these documents can be
different between the improved topk and heapk. The MAiP
measures for the topk are different as it used term frequen-
cies directly for similarity ranking.

3.3 Accumulator Initialisation
Since search engines are normally bottlenecked by other

factors, the effect of accumulator initialisation has almost
been ignored. However, after applying these optimisations,
our search engine was bottlenecked by accumulator initiali-
sation. In [13], I proposed an efficient accumulator initiali-
sation method. It uses two static arrays. One array is used
to hold all accumulators (one for each document) and the
other to hold a number of flags. Every flag is associated with
a particular subset of the accumulators, indicating the ini-
tialisation status for that set of accumulators. Essentially,
we turn the one dimensional array of accumulators into a
logical two dimensional table. The number of the flags is
the same as the height of the table.

Initially, the flags are initialised to zero, indicating all ac-
cumulators having zero values. When updating an accumu-
lator with a new value, the flag associated with that row
of the accumulator is set to 1. For updating operation, the
logical row of a accumulator can be obtained by a division
operation of the index of the accumulator. Two possible
cases can happen. If the flag is 0, it is set to 1, the associ-
ated accumulators are initialised and the new value is added
to the accumulator. If the flag is 1, the new value can be
simply aggregated to the accumulator.

In order to compare the static array approach with the
logical two dimensional table, the experiments were con-
ducted using the INEX 2009 Wikipedia collection [22] and
the 115 Type-A (short) queries for the INEX 2009 Effi-
ciency Track [23]. The collection was indexed with no words
stopped and stemming was not used.

The results are shown in Figure 3. The width for the
logical two dimensional table was chosen to be 256 accumu-
lators. The only performance differences between these two
approaches are the times taken for the accumulator initial-
isation, and the added overhead to locate the accumulator
in ranking function. The logical two dimensional table took

about zero time for the accumulator initialisation since it
was very fast to initialise a small number of flags. How-
ever, the logical two dimensional table added small amount
of overhead for ranking due to the extra operations required
to keep track of the flag status. When comparing the total
evaluation times, the logical two dimensional table outper-
formed the static array in all runs.

In [13] I include a formal proof as to the optimal width of
the row - it is dependent on the number of terms and the
lengths of the postings lists. In further work I will compare
estimates of this optimal value to the current estimate we
use (a whole power of two) and develop a model of the error
between the two.
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Figure 3: Comparison of difference approaches for
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group shows the results for the static array structure
while the second shows the results for the logical two
dimensional table.

3.4 Dictionary Compression
I am currently working on an efficient solution for dictio-

nary compression [28, 12]. In our search engine, the dictio-
nary of terms is split into two parts. Terms with the same
prefix are grouped together in a term block. The common
prefix (only the first four characters) is stored in the first
level of the dictionary and the remaining are stored in the
term block in the second level (it is a 2-level B-tree). The
number of terms in the block is stored at the beginning of
the block. The term block also stores the statistics for the
terms, including collection frequency, document frequency,
offset to locate the postings list. The length of the postings
list stored on disk, the uncompressed length of the postings
list, and the position to locate the term suffix which is stored
at the end of the term block.

The performance of this dictionary compression algorithm
has not yet been compared to those of others. To do so
it will be compared to dictionary-as-a-string and blocked-
storage [15], front coding [31].

4. DISCUSSION
This research investigates the bottlenecks of the search

engine and proposed efficient and effective solutions to min-
imise or eliminate the bottlenecks; (1) Disk I/O is com-
pletely eliminated by simply loading the index file into mem-
ory. (2) Similarly scores are pre-computed at index time. (3)



The proposed heapk pruning algorithm is very efficient and
effective. (4) Partial decompression of postings lists is de-
ployed. (5) efficient solution for accumulator initialisation is
proposed.

When the heapk pruning algorithm is used, the search
engine can be between 70% and 94% more efficient than
when no optimisation is used. When the postings lists are
static pruned at 10,000 postings or fewer, the search engine is
bottlenecked by the accumulator initialisation. I introduced
an efficient accumulator initialisation algorithm to address
this [13]. Essentially, the search engine has been optimised
to be able to handle one query in sub-millisecond on average
on the INEX Wikipedia collection.

A number of other pruning algorithms have also been in-
vestigated and implemented into the search engine, includ-
ing the threshold pruning algorithm [9], QUIT and CON-
TINUE [18, 16], the filtered pruning algorithm [20, 21] and
the any-time stopping algorithm [1]. In the future a com-
parison of these algorithms will be conducted. What effec-
tiveness measurement should be used in order to make a fair
comparison (P@n, MAP, MAiP or others)?

The heapk is a static pruning algorithm. One potential
improvement of the algorithm is to make it dynamic. The
first questions is what is wrong with static pruning? If a
static pruning algorithm can be efficient and effective, why
not just use a static pruning algorithm? Dynamic pruning
may just add more runtime overhead.

Multi-core CPU architectures are getting popular. A re-
search question on using such architectures is how to opti-
mise search engines to use all available cores. One approach
is to run one instance of a search engine which has mul-
tiple threads. The problem with this approach is locking,
synchronisation and the complexity of managing threads in
different states. Another approach is to run one instance of
a search engine on each core. This approach is similarly to
traditional distributed IR, but on a single machine.

The most important question is: in what future directions
can this research be taken?
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